STATISTICS MATHEMATICS & FYJC

PAPER - I

STRAIGHT LINES

Compiled & Conducted @ JKSC

 $\boldsymbol{\diamondsuit}$ if the line makes an angle $\boldsymbol{\theta}$ with the positive x – axis then slope of the line is

given as

$$m = tan \theta$$

- $\boldsymbol{\diamond}$ if line passes through points (x1,y1) & (x2,y2) , then slope of the line is given
 - as

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- Given equation of the line : ax + by + c = 0; slope is given as
 - m = -ab
- ✤ Slopes of parallel lines are equal : m1 = m2
- Product of slopes of perpendicular lines = -1 i.e. $m_1.m_2 = -1$
- If the line has slope m & passes through point (x1,y1); then equation of the line can be formed using Slope - Point form

$$y - y_1 = m(x - x_1)$$

✤ If the line passes through points (x1,y1) & (x2,y2) ; then the equation of the line can be formed using Two – Point form

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

- If the line makes x intercept : a and y intercept : b on the axes , then the equation of the line can be formed using Double Intercept form
 - $\frac{x}{a} + \frac{y}{b} = 1$
- \checkmark If θ is the acute angle between the two lines having slopes m1 & m2 ; then

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$$

• Distance of the line ax + by + c = 0 from the origin is given as

$$d = \left| \frac{c}{\sqrt{a^2 + b^2}} \right|$$

• Distance of the line ax + by + c = 0 from the (x_1,y_1) is given as

$$d = \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$$

- Distance between the two parallel lines $ax + by + c_1 = 0$ and $ax + by + c_2$
 - = 0 is given as

$$d = \left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right|$$

Q. SET - 1

- **01.** find line passing through (2,5) & parallel to 3x 4y 7 = 0
- **02.** find line passing through (1,1) and parallel to 4x + y 11 = 0
- **03.** find line passing through (1, -4) and perpendicular to x + 2y + 1 = 0
- **04.** find line having x intercept 4 and parallel to 3x + y + 1 = 0
- 05. Find equation of the line joining the points (3,-1) and (2,3). Also find the equation of the line perpendicular to this line and passing through (5,2)
- 06. A(2,1) , B(5,3) and C(-1,3) are vertices of ΔABC. Find equation of
 a) median through A b) altitude from B
 c) perpendicular bisector of AC
- 07. Find equation of the line which passes through the point of intersection of the lines x + 2y - 3 = 0 and 3x + 4y - 5 = 0and which is perpendicular to the line x - 3y + 5 = 0

Q. SET - 2

01. find equation of the line making equal intercepts on the coordinate axes and passing through (3, -5)

02. line makes intercepts of equal magnitude and opposite sign on coordinate axes . If it passes through (-7,2) , find its equation

03. sum of intercepts made by a line on the coordinate axes is 2. If the line passes through (4, -3) find its equation

04. a line passes through (3,4) and sum of its intercepts made on the coordinate axes is14. Find the equation of the line

05. a line passes through (5, -3) and sum of its intercepts made on the coordinate axes is
16. Find the equation of the line

06. Find equation of the line passing through centroid of triangle ABC whose vertices are A(1,6), B(-2,9) and C(-2, 3) such that sum of its intercepts on the coordinate axes is 6.

07. Find equation of the lines which cut off intercepts on the coordinate axes whose sum is 1 and product is -6

Q SET – 3

01.

Find equation of the line passing through (3,5)and the point which bisects the portion of the line 3x + 4y = 24 intercepted between the coordinate axes

02.

Find the equation of line which passes through A(1,2) and the midpoint of the portion of the line 3x - 4y + 24 = 0 intercepted between the coordinate axes.

03.

find equation of the line passing through (-3,1)and the point which divides internally in the ratio 3 : 2 the portion of the line 4x + y = 8intercepted between the coordinate axes

Q SET – 4A

01.

find the measure of acute angle between the lines

a) 3x - y + 5 = 0 & 6x + 3y - 7 = 0b) $\sqrt{3x} - y - 4 = 0 \& x - \sqrt{3y} + 7 = 0$

02.

find the angle subtended by the line segment PQ at the origin if P(1, $\sqrt{3}$) & Q($\sqrt{3}$,1)

03.

Show that the line segment joining the points $(\sqrt{3},1)$ and $(\sqrt{3},-1)$ subtends an angle of measure of 60° at the origin

04.

Find equation of a line through origin which makes an angle 45° with the line 6x-2y + 7 = 0

05.

find equation of the lines through the point (3, -5) making an angle of 45° with the line x - 2y + 1 = 0

06.

Find equations of the lines passing through the point (4,5) and making an angle of 45° with the line 2x - y + 7 = 0

07.

find equation of the lines which pass through point (1,2) and inclined at an angle of 60° to the line $\sqrt{3x} + y - 2 = 0$

08.

find equation of the lines which pass through point (-1, -4) and inclined at an angle of 60° to the line $\sqrt{3}x + y + 5 = 0$

09.

ABC is an equilateral triangle. If A(1,2)and equation of BC is x + y + 5 = 0, find the equation of the sides AB and AC

10.

the base of an equilateral triangle is the line x + y - 2 = 0 & the vertex is at the point (2, -1). Find the equation of other sides

11.

if the acute angle between the lines 4x - y + 7 = 0 and kx - 5y - 9 = 0 is 45° , find k

4 B

01.

if (3, -5) and (-1, 3) are the opposite vertices of a square , find the equation of the sides

02.

if (1, 2) and (3, 8) are the opposite vertices of a square, find the equation of the sides

Q SET - 5A

01.

Find equation of the line parallel to 3x - 4y - 1 = 0and which is at a distance of 3 units from the point (2, -1)

02.

Find equation of the line parallel to 3x - 4y - 7 = 0and which is at a distance of 4 units from the point (-2,1)

03.

Find equation of the line parallel to 3x + y - 8 = 0and which is at a distance of $\sqrt{10}$ units from the point (3, 1)

04.

Find equation of the line parallel to x + 3y - 5 = 0and which is at a distance of $3\sqrt{10}$ units from the point (2, -2)

Q SET - 5B

$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}$$

01.

Find the points on the line x + y + 3 = 0whose distance from x + 2y + 2 = 0 is $\sqrt{5}$ units **ans**: (-9,6) and (1, -4)

02.

Find the points on the line x + y - 4 = 0whose distance from 4x + 3y = 10 is 1 unit **ans**: (3,1) and (-7,11)

03.

Find the points on the line 2x + 3y + 4 = 0which are at a distance of 2 units from the line 3x + 4y - 6 = 0**ans**: (64, -44) and (4, -4)

04.

Find the points on the line 2x + y - 3 = 0whose distance from 6x - 8y - 3 = 0 is 0.5 units

ans: (¹⁶/11,¹/11); (1, 1)

05.

Find the coordinates of the point on X - axiswhose distance from the line $x + \sqrt{3}y - 2 = 0$ is 5 units

ans: (12,0) and (-8,0)

MISC.

- 01. The points A(2,3), B(4, -1) and C(-1,2) are the vertices of ΔABC. Find the length of the perpendicular from C on AB and hence find then area of Δ ABC ans : 7 sq. units
- **02.** If the length of perpendicular distance is p units from the origin to the line :

$$\frac{x}{a} + \frac{y}{b} = 1$$

SOLUTION - QSET 1

- 01. find line passing through (2,5) and parallel to 3x - 4y - 7 = 0 3x - 4y - 7 = 0 $m = -\frac{a}{b} = -\frac{3}{-4} = \frac{3}{4}$ Required Line m = 3/4, (// lines) passing through (2,5) $y - y_1 = m (x - x_1)$ $y - 5 = \frac{3}{4}(x - 2)$ 4y - 20 = 3x - 63x - 4y + 14 = 0
- 02. find line passing through (1,1) and parallel to 4x + y - 11 = 04x + y - 11 = 0 $m = -\frac{a}{b} = -\frac{4}{1} = -4$ <u>Required Line</u> m = -4, (// lines) passing through (1,1) $y - y_1 = m (x - x_1)$
 - y 1 = -4x + 44x + y - 5 = 0

y - 1 = -4(x - 1)

03. find line passing through (1,-4) and perpendicular to x + 2y + 1 = 0x + 2y + 1 = 0 $m = -\frac{a}{b} = -\frac{1}{2}$ <u>Required Line</u> m = 2, (\perp lines) passing through (1,-4) $y - y_1 = m (x - x_1)$ y + 4 = 2(x - 1)y + 4 = 2x - 2

2x - y - 6 = 0

- 04. find line having x intercept 4 and parallel to 3x + y + 1 = 0 3x + y + 1 = 0 $m = -\frac{a}{b} = -\frac{3}{1} = -3$ <u>Required Line</u> m = -3, (// lines) passing through (4,0), $y - y_1 = m (x - x_1)$ y - 1 = -4(x - 1) y - 1 = -4x + 44x + y - 5 = 0
- 05. Find equation of the line joining the points (3,-1) and (2,3). Also find the equation of the line perpendicular to this line and passing through (5,2) A(3,-1), B(2,3) Equation of AB

 $y - y_{1} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} (x - x_{1})$ $y + 1 = \frac{3 - (-1)}{2 - 3} (x - 3)$ $y + 1 = \frac{4}{-1} (x - 3)$ -y - 1 = 4x - 12 $4x + y - 11 = 0 \qquad \text{equation of AB}$ $let PQ \perp AB$ $m_{AB} = -4 \qquad \therefore \qquad m_{PQ} = \frac{1}{4}$ $\frac{Equation \ of PQ}{m = \frac{1}{4}, \ (5, 2)}$ $y - y_{1} = m \ (x - x_{1})$ $y - 2 = \frac{1}{4} \ (x - 5)$ 4y - 8 = x - 5 x - 4y + 3 = 0

06. A(2,1) , B(5,3) and C(-1,3) are vertices of $\triangle ABC$. Find equation of

equation of median AM

$$A(2,1) , B(2,3)$$

$$y - y_1 = \underbrace{y_2 - y_1}_{X_2 - X_1} (x - X_1)$$

$$y + 1 = \underbrace{3 - 1}_{2 - 2} (x - 2)$$

$$0 = 2x - 4$$

$$x = 2$$

b) altitude through B (say BE)

c)perpendicular Bisector of AC (say PQ) ${}^{m}_{AC} = \frac{3-1}{-1-2} = -\frac{2}{3}$ ${}^{m}_{PQ} = \frac{3}{2}$ (PQ \perp AC) midpoint of AC $= \left(\frac{2-1}{2}, \frac{1+3}{2}\right)$ $= \left(\frac{1}{2}, 2\right)$

Equation of PQ $m = \frac{3}{2}, (\frac{1}{2}, 2)$ $y - y_1 = m(x - x_1)$ $y - 2 = \frac{3}{2}(x - \frac{1}{2})$ $y - 2 = \frac{3}{4}(2x - 1)$ 4y - 8 = 6x - 36x - 4y + 5 = 0 **07.** Find equation of the line which passes through the point of intersection of the lines x + 2y - 3 = 0 and 3x + 4y - 5 = 0 and which is perpendicular to the line x - 3y + 5 = 0

Point of Intersection

x + 2y 3x + 4y	=	3 5	х	2
3x + 4y	=	5		
2x + 4y	=	6	_	
х	=	-1	_	
(1)				

subs in (1) y = 2 : (-1,2)

slope of line x - 3y + 5 = 0

 $m = -\frac{a}{b} = -\frac{1}{-3} = \frac{1}{3}$

slope of required line = -3 (\perp lines)

Equation of required line

m = -3 , passing through (-1,2)y - y1 = m (x - x1) y - 2 = -3(x + 1) y - 2 = -3x - 3 3x + y + 1 = 0

SOLUTION - QSET 2

01. find equation of the line making equal intercepts on the coordinate axes and passing through (3, -5)

a = b given

let the equation of the line be

$$\frac{x}{a} + \frac{y}{b} = 1$$
$$\frac{x}{a} + \frac{y}{a} = 1$$
$$x + y = a$$

since the line passes through (3,-5) , it must satisfy the equation

3 - 5 = a

a = -2

Hence the equation is

x + y = -2x + y + 2 = 0

02. line makes intercepts of equal magnitude and opposite sign on coordinate axes . If it passes through (-7,2) , find its equation a = -b given

let the equation of the line be

 $\frac{x}{a} + \frac{y}{b} = 1$ $\frac{x}{a} + \frac{y}{-a} = 1$ x - y = a

since the line passes through (-7,2), it must satisfy the equation

-7 - 2 = a

a = -9

Hence the equation is

x - y = -9x - y + 9 = 0 **03.** sum of intercepts made by a line on the coordinate axes is 2. If the line passes through (4, -3) find its equation.

$$a + b = 2$$
 given
 $b = 2 - a$ (1)

let the equation of the line be

$$\frac{x}{a} + \frac{y}{b} = 1$$
$$\frac{x}{a} + \frac{y}{2-a} = 1$$

since the line passes through (4,-3) , it must satisfy the equation

$$\frac{4}{a} + \frac{-3}{2-a} = 1$$

$$8 - 4a - 3a = a(2 - a)$$

$$8 - 7a = 2a - a^{2}$$

$$a^{2} - 9a + 8 = 0$$

$$a^{2} - 8a - 1a + 8 = 0$$

$$a(a - 8) - 1(a - 8) = 0$$

$$(a - 8)(a - 1) = 0$$

$$a = 8$$

$$b = 2 - a$$

$$= 2 - 8$$

$$= -6$$
Equation
$$\frac{x}{a} + \frac{y}{b} = 1$$

$$\frac{x}{8} + \frac{y}{-6} = 1$$

$$\frac{x}{8} - \frac{y}{6} = 1$$

$$6x - 8y = 48$$

$$3x - 4y = 24$$

04. a line passes through (3,4) and sum of its intercepts made on the coordinate axes is14. Find the equation of the line

a + b = 14 given

b = 14 - a (1)

let the equation of the line be

$$\frac{x}{a} + \frac{y}{b} = 1$$
$$\frac{x}{a} + \frac{y}{14 - a} = 1$$

since the line passes through (3,4) , it must satisfy the equation

$$\frac{3}{a} + \frac{4}{14 - a} = 1$$

$$42 - 3a + 4a = a(14 - a)$$

$$42 + a = 14a - a^{2}$$

$$a^{2} - 13a + 42 = 0$$

$$a^{2} - 6a - 7a + 80 = 0$$

$$a(a - 6) - 7(a - 20) = 0$$

$$(a - 6)(a - 7) = 0$$

$$a = 6$$

$$b = 14 - a$$

$$= 14 - 6$$

$$= 3$$
Equation
$$\frac{x}{a} + \frac{y}{b} = 1$$

$$\frac{x}{7} + \frac{y}{7} = 1$$

$$\frac{x + y = 7}{7}$$

$$8x + 6y = 48$$

$$4x + 3y = 24$$

05. a line passes through (5, -3) and sum of
its intercepts made on the coordinate axes is
16 . Find the equation of the line

a + b = 16 given

b = 16 - a (1)

let the equation of the line be

$$\frac{x}{a} + \frac{y}{b} = 1$$
$$\frac{x}{a} + \frac{y}{16-a} = 1$$

since the line passes through (5,-3) , it must satisfy the equation

$$\frac{5}{a} + \frac{-3}{16 - a} = 1$$

80 - 5a - 3a = a(16 - a)

 $80 - 8a = 16a - a^2$

 $a^2 - 24a + 80 = 0$

 $a^2 - 20a - 4a + 80 = 0$

$$a(a - 20) - 4(a - 20) = 0$$

$$(a - 20)(a - 4) = 0$$

= 7	a = 4	a = 20
= 14 – a	b = 16 - a	b = 16-a
= 14 - 7	= 16 - 4	= 16 - 20
= 7	= 12	= -4
Jation	Equation	Equation
$+ \frac{y}{b} = 1$	$\frac{x}{a} + \frac{y}{b} = 1$	$\frac{x}{a} + \frac{y}{b} = 1$
$+ \frac{y}{7} = 1$	$\frac{x}{4} + \frac{y}{12} = 1$	$\frac{x}{20} + \frac{y}{-4} = 1$
- y = 7	$\frac{3x + y}{12} = 1$	$\frac{x}{20} - \frac{y}{4} = 1$
	3x + y = 12	$\frac{x-5y}{20} = 1$
	3x + y - 12 = 0	$\frac{x - 5y = 20}{2}$

06. Find equation of the line passing through centroid of triangle ABC whose vertices are A(1,6), B(-2,9) and C(-2, 3) such that sum of its intercepts on the coordinate axes is 6.

$$G = \left(\frac{1-2-2}{3}, \frac{6+9+3}{3}\right) = (-1, 6)$$

a + b = 6 given
b = 6 - a (1)

let the equation of the line be

$$\frac{x}{a} + \frac{y}{b} = 1$$
$$\frac{x}{a} + \frac{y}{6-a} = 1$$

since the line passes through (-1,6) , it must satisfy the equation

а 2

07. Find equation of the lines which cut off intercepts on the coordinate axes whose sum is 1 and product is -6 $a + b = 1 \therefore b = 1 - a$ ab = -6a(1-a) = -6a - a2 = -6 $a^2 - a - 6 = 0$ $a^2 - 3a + 2a - 6 = 0$ a(a - 3) + 2(a - 3) = 0(a - 3)(a + 2) = 0a = 3 a = -2 b = 1-a b = 1 - a= 1 - 3 = 1 + 2 = -2 = 3 Equation Equation $\frac{x}{a} + \frac{y}{b} = 1$ $\frac{x}{a} + \frac{y}{b} = 1$ $\frac{x}{3} + \frac{y}{-2} = 1$ $\frac{x}{-2} + \frac{y}{3} = 1$ $\frac{3x - 2y}{-6} = 1$ -2x + 3y = -62x - 3y - 6 = 03x - 2y = -6 $\frac{3x-2y+6}{2} = 0$

SOLUTION - QSET 3

01.

Find equation of the line passing through (3,5)and the point which bisects the portion of the line 3x + 4y = 24 intercepted between the coordinate axes

SOLUTION

STEP 1:

3x + 4y = 24

put y = 0 ; x = 8 \therefore A (8,0)

put x = 0; y = 6 ... B (0.6)

STEP 2:

P is the midpoint of AB

Using midpoint formula

$$P \equiv \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$\equiv \left(\frac{8 + 0}{2}, \frac{0 + 6}{2}\right)$$
$$P \equiv (4,3)$$

STEP 3:

Line is passing through (3,5) & (4,3)

Equation of the line

$$y - y_{1} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} \quad (x - x_{1})$$

$$y - 5 = \frac{3 - 5}{4 - 3} (x - 3)$$

$$y - 5 = -2(x - 3)$$

$$y - 5 = -2x + 6$$

$$2x + y - 5 - 6 = 0$$

$$2x + y - 11 = 0$$

02.

Find the equation of line which passes through A(1,2) and the midpoint of the portion of the line 3x - 4y + 24 = 0 intercepted between the coordinate axes.

SOLUTION

STEP 1 :

$$3x - 4y + 24 = 0$$
put y = 0 ; $3x + 24 = 0$
 $3x = -24$ \therefore P (-8,0)
put x = 0 ; $-4y + 24 = 0$
 $-4y = -24$ \therefore Q (0.6)

STEP 2:

Let B be the midpoint of PQ

Using midpoint formula

$$B = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$= \left(\frac{-8 + 0}{2}, \frac{0 + 6}{2}\right)$$
$$B = (-4, 3)$$

STEP 3 :

Line is passing through (1,2) & (-4,3)

Equation of the line

$$y - y_{1} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} \quad (x - x_{1})$$

$$y - 2 = \frac{3 - 2}{-4 - 1} (x - 1)$$

$$y - 2 = \frac{1(x - 1)}{-5}$$

$$-5y + 10 = x - 1$$

$$x + 5y - 11 = 0$$

03.

find equation of the line passing through (-3,1)and the point which divides internally in the ratio 3 : 2 the portion of the line 4x + y = 8intercepted between the coordinate axes **SOLUTION**

STEP 1:

4x + y = 8put y = 0 ; x = 2 \therefore A (2,0) put x = 0 ; y = 8 \therefore B (0.8)

STEP 2 :A3P2B(2,0)(x,y)(0,8)P divides seg AB internally in the ratio 3:2

Using section formula

$$P \equiv \left(\frac{mx_2 + nx_1}{2}, \frac{my_2 + ny_1}{2}\right)$$
$$\equiv \left(\frac{3(0) + 2(2)}{3 + 2}, \frac{3(8) + 2(0)}{3 + 2}\right)$$
$$P \equiv (4/5, 24/5)$$

STEP 3:

Line is passing through (-3,1) & (4/5,24/5)

Equation of the line

$$y - y_{1} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} (x - x_{1})$$

$$y - 1 = \frac{24}{5} - 1 (x + 3)$$

$$\frac{5}{4} + 3$$

$$y - 1 = \frac{19}{5} (x + 3)$$

$$\frac{5}{19} - 5$$

$$y - 1 = x + 3$$

$$x - y + 4 = 0$$

SOLUTION - QSET 4

01.

find the measure of acute angle between the lines

a)
$$3x - y + 5 = 0 \& 6x + 3y - 7 = 0$$

$$3x - y + 5 = 0$$
; $m_1 = -a = -3 = 3$
b -1

$$6x + 3y - 7 = 0; m_2 = - \frac{a}{b} = -2$$

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right|$$
$$= \left| \frac{3 - (-2)}{1 + 3(-2)} \right|$$
$$= \left| \frac{5}{-5} \right|$$
$$= 1$$
$$\theta = 45^{\circ}$$

b)
$$\sqrt{3x} - y - 4 = 0 \& x - \sqrt{3y} + 7 = 0$$

$$\sqrt{3x - y - 4} = 0; \quad m_1 = -\underline{a} = -\sqrt{3} = \sqrt{3}$$

b -1

$$x - \sqrt{3}y + 7 = 0;$$
 $m_2 = -a = -\frac{1}{-\sqrt{3}} = \frac{1}{\sqrt{3}}$

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right|$$
$$= \left| \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{\frac{\sqrt{3}}{1 + \sqrt{3} \cdot \frac{1}{\sqrt{3}}}} \right|$$
$$= \left| \frac{3 - 1}{\frac{\sqrt{3}}{1 + 1}} \right|$$
$$= \frac{1}{\sqrt{3}}$$

= 300

find the angle subtended by the line segment

PQ at the origin if P(1, $\sqrt{3}$) & Q($\sqrt{3}$,1)

SOLUTION

ΟΡ	:	ΜĮ	=	$\frac{y_2 - y_1}{x_2 - x_1}$	=	$\frac{\sqrt{3}-0}{1-0}$	=	√3
OQ	:	m ₂	=	$\frac{y_2 - y_1}{x_2 - x_1}$	=	$\frac{1-0}{\sqrt{3}-0}$	=	$\frac{1}{\sqrt{3}}$

let θ be the angle subtended by PQ at the origin (θ is the angle between the lines OP & OQ)

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right|$$
$$= \left| \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \sqrt{3} \cdot \frac{1}{\sqrt{3}}} \right|$$
$$= \left| \frac{3 - 1}{\frac{\sqrt{3}}{1 + 1}} \right|$$

$$=$$
 $\frac{1}{\sqrt{3}}$

 $\theta = 30^{\circ}$

03.

Show that the line segment joining the points $(\sqrt{3},1)$ and $(\sqrt{3},-1)$ subtends an angle of measure of 60° at the origin

SOLUTION

Let P((
$$\sqrt{3}$$
,1) and Q($\sqrt{3}$,-1)
OP : m₁ = $\frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{1 - 0}{\sqrt{3} - 0}$ = $\frac{1}{\sqrt{3}}$
OQ : m₂ = $\frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{-1 - 0}{\sqrt{3} - 0}$ = $-\frac{1}{\sqrt{3}}$

let θ be the angle subtended by PQ at the origin (θ is the angle between the lines OP & OQ)

$$\tan \theta = \left| \frac{\text{m1} - \text{m2}}{1 + \text{m1.m2}} \right|$$
$$= \left| \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} \right|$$
$$= \left| \frac{2}{\sqrt{3}} \right|$$
$$= \left| \frac{2}{\sqrt{3}} \right|$$
$$= \left| \frac{2}{\sqrt{3}} \right|$$
$$= \left| \frac{2}{\sqrt{3}} \right|$$
$$= \frac{2}{\sqrt{3}}$$
$$= \frac{3}{\sqrt{3}}$$
$$= \sqrt{3}$$
$$\theta = 60^{\circ}$$

Find equation of a line through origin which makes an angle 45° with the line 6x-2y + 7 = 0

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$$

$$\tan 45 = |m - 3|$$

$$1 = \left| \frac{m-3}{1+3m} \right|$$

STEP 3

Equation of OA :
$$m = -2$$
, O(0,0)
 $y - y_1 = m(x - x_1)$
 $y - 0 = -2(x - 0)$
 $y = -2x$
 $2x + y = 0$

Equation of OB:
$$m = \frac{1}{2}$$
, O(0,0)
 $y - y_1 = m(x - x_1)$
 $y - 0 = \frac{1(x - 0)}{2}$
 $2y = x$
 $x - 2y = 0$

05.

R

find equation of the lines through the point (3, -5) making an angle of 45° with the line

$$x - 2y + 1 = 0$$

$$x - 2y + 1 = 0$$

$$x - 2y + 1 = 0$$

$$m = \frac{-a}{b} = -\frac{1}{(-2)} = 1$$

$$\frac{4(3, -5)}{x - 2y + 1 = 0} = 0$$

$$m = \frac{-a}{b} = -\frac{1}{(-2)} = 1$$

$$\frac{45^{\circ} m = 1/2}{x - 2y + 1 = 0} = 0$$

$$m = \frac{-a}{b} = -\frac{1}{(-2)} = 1$$

$$2$$
SIEP 2:

$$\tan \theta = \left| \frac{m1 - m2}{1 + m(1/2)} \right|$$

$$1 = \left| \frac{2m - 1}{2 + m} \right|$$

$$\frac{2m - 1}{2 + m} = 1$$

$$2m - 1 = 2 + m$$

$$2m - 1 = 2 + m$$

$$2m - 1 = 2 + m$$

$$2m - 1 = -2 - m$$

$$2m + m = -2 + 1$$

$$m = 3$$

$$m = 3$$

$$m = -1$$

$$m = -\frac{1}{3}$$

STEP 3

Equation of AB : m = 3, A(3,-5) $y - y_1 = m(x - x_1)$ y + 5 = 3(x - 3) y + 5 = 3x - 9 3x - y - 14 = 0Equation of AC : m = -1, A(3,-5) $3 = y - y_1 = m(x - x_1)$ y + 5 = -1(x - 3) 3y + 15 = -x + 3x + 3y + 12 = 0 Find equations of the lines passing through the point (4,5) and making an angle of 45° with the line 2x - y + 7 = 0

/m/

A(4,5)

m = 2

 \sim

STEP 1 :

$$2x - y + 7 = 0$$

$$m = \frac{-a}{b} = \frac{-2}{(-1)} = 2$$

STEP 2:

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 . m_2} \right|$$

 $\tan 45 = \left| \frac{m - 2}{1 + m(2)} \right|$
 $1 = \left| \frac{m - 2}{1 + 2m} \right|$
 $\underline{m - 2} = 1$ $\underline{m - 2} = -1$

1 + 2m
m – 2 = –1 – 2m
m + 2m = -1 + 2
3m = 2
$m = \frac{1}{3}$

STEP 3

Equation of AB : m = -3 , A(4, 5) $y - y_1 = m(x - x_1)$ y - 5 = -3(x - 4)y - 5 = -3x + 123x + y - 17 = 0

Equation of AC:
$$m = \frac{1}{3}$$
, A(4, 5)
 $y - y_1 = m(x - x_1)$
 $y - 5 = \frac{1}{3}(x - 4)$
 $3y - 15 = x - 4$
 $x - 3y + 15 - 4 = 0$
 $x - 3y + 11 = 0$

07.

find equation of the lines which pass through point (1,2) and inclined at an angle of 60° to the line $\sqrt{3x} + y - 2 = 0$

STEP 1 :

$$\sqrt{3x} + y - 2 = 0$$

m = $\frac{-a}{b} = \frac{-\sqrt{3}}{1} =$

$$A(1,2)$$

$$M(1,2)$$

$$A(1,2)$$

$$A$$

STEP 2:

$$\tan \theta = \underline{m_1 - m_2} \\ 1 + m_1.m_2$$

$$\tan 60 = \left| \frac{m + \sqrt{3}}{1 + m(-\sqrt{3})} \right|$$

$$\sqrt{3} = \frac{m + \sqrt{3}}{1 - \sqrt{3}m}$$

$$\frac{m + \sqrt{3}}{1 - \sqrt{3}m} = \sqrt{3} \qquad \frac{m + \sqrt{3}}{1 - \sqrt{3}m} = -\sqrt{3} m + \sqrt{3} = \sqrt{3} - 3m \qquad m + \sqrt{3} = -\sqrt{3} + 3m m + 3m = \sqrt{3} - \sqrt{3} \qquad m - 3m = -\sqrt{3} - \sqrt{3} 4m = 0 \qquad -2m = -2\sqrt{3} m = 0 \qquad m = \sqrt{3}$$

.

STEP 3

Equation of AB : m = 0, A(1, 2) $y - y_1 = m(x - x_1)$ y - 2 = 0(x - 1)y - 2 = 0Equation of AC : $m = \sqrt{3}$, A(1, 2)

$y - y_1 = m(x - x_1)$ $y - 2 = \sqrt{3}(x - 1)$ $y - 2 = \sqrt{3}x - \sqrt{3}$ $\sqrt{3x} - y + 2 - \sqrt{3} = 0$

find equation of the lines which pass through point (-1, -4) and inclined at an angle of 60° to the line $\sqrt{3x} + y + 5 = 0$

A(-1, -4)

STEP 1: $\sqrt{3x} + y + 5 = 0$ $m = \frac{-a}{b} = -\frac{\sqrt{3}}{1} = -\sqrt{3}$

STEP 2:

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$$
$$\tan 60 = \frac{m + \sqrt{3}}{1 + m(-\sqrt{3})}$$

$$\sqrt{3} \qquad = \left| \frac{m + \sqrt{3}}{1 - \sqrt{3}m} \right|$$

$$\frac{m + \sqrt{3}}{1 - \sqrt{3m}} = \sqrt{3} \qquad \qquad \frac{m + \sqrt{3}}{1 - \sqrt{3m}} = -\sqrt{3} \\ m + \sqrt{3} = \sqrt{3} - 3m \qquad \qquad m + \sqrt{3} = -\sqrt{3} + 3m \\ m + 3m = \sqrt{3} - \sqrt{3} \qquad \qquad m - 3m = -\sqrt{3} - \sqrt{3} \\ 4m = 0 \qquad \qquad -2m = -2\sqrt{3} \\ m = 0 \qquad \qquad m = \sqrt{3}$$

STEP 3

Equation of AB : m = 0, A(-1, -4) $y - y_1 = m(x - x_1)$ y + 4 = 0(x + 1)y + 4 = 0

Equation of AC : m = $\sqrt{3}$, A(-1, -4)

 $y - y_1 = m (x - x_1)$ y + 4 = $\sqrt{3}(x + 1)$ y + 4 = $\sqrt{3}x + \sqrt{3}$ $\sqrt{3}x - y + \sqrt{3} - 4 = 0$

09.

ABC is an equilateral triangle. If A(1,2)and equation of BC is x + y + 5 = 0, find the equation of the sides AB and AC

STEP 2 :

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right|$$
$$\tan 60 = \left| \frac{m + 1}{1 + m(-1)} \right|$$

$$\sqrt{3} = \left| \frac{m+1}{1-m} \right|$$

$$\frac{m+1}{1-m} = \sqrt{3}$$

$$\frac{m+1}{1-m} = -\sqrt{3}$$

$$m+1 = \sqrt{3} - \sqrt{3m}$$

$$m+1 = -\sqrt{3} + \sqrt{3m}$$

$$1 + \sqrt{3} = \sqrt{3m} - m$$

$$1 + \sqrt{3} = m(\sqrt{3} - 1)$$

$$m = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$$

$$m = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$$

$$m = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$$

$$\frac{\sqrt{3} + 1}{\sqrt{3} - 1}$$

$$m = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$$

$$m = \frac{4 + 2\sqrt{3}}{2}$$

$$m = 2 + \sqrt{3}$$

STEP 3

Equation of AB: $m = 2 - \sqrt{3}$, A(1,2) $y - y_1 = m(x - x_1)$ $y - 2 = (2 - \sqrt{3})(x - 1)$

Equation of AC :
$$m = 2 + \sqrt{3}$$
, A(1,2)
 $y - y_1 = m(x - x_1)$
 $y - 2 = (2 + \sqrt{3})(x - 1)$

10.

the base of an equilateral triangle is the line x + y - 2 = 0 & the vertex is at the point (2, -1). Find the equation of other sides **ans**: $y + 1 = (2 - \sqrt{3})(x - 2)$ and

 $y + 1 = (2 + \sqrt{3})(x - 2)$ REFER SOLN 9

11.

if the acute angle between the lines 4x - y + 7 = 0 and kx - 5y - 9 = 0 is 45° , find k

 $4x - y + 7 = 0 ; \quad m_1 = -\frac{a}{b} = -\frac{4}{-1} = 4$ $kx - 5y - 9 = 0; \quad m_2 = -\frac{a}{b} = -\frac{k}{-5} = \frac{k}{5}$ $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right|$ $\tan 45 = \left| \frac{4}{-\frac{k}{5}} - \frac{k}{1} \right|$ $1 = \left| \frac{20 - k}{5 + 4k} \right|$ $\frac{20 - k}{5 + 4k} = 1$ 20 - k = 5 + 4k 15 = 5k k = 3 k = -25/3

3 B

01.

if (3, -5) and (-1,3) are the opposite vertices of a square , find the equation of the sides **SOLUTION** :

STEP 1:

A(3,-5) , C(-1, 3)
m =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{3 + 5}{-1 - 3} = -2$$

STEP 2 :

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$$

$$\tan 45 = \frac{m + 2}{1 + m(-2)}$$

$$1 = \frac{m + 2}{1 - 2m}$$

$$\frac{m+2}{1-2m} = 1$$

$$\frac{m+2}{1-2m} = -1$$

$$\frac{m+2}{1-2m} = -1$$

$$m+2 = 1 - 2m$$

$$m+2 = -1 + 2m$$

$$m+2m = 1 - 2$$

$$3m = -1$$

$$m = -1$$

$$m = -3$$

$$m = -3$$

$$m = 3$$

$$let$$

$$m_{AB} = {}^{m}CD = -\frac{1}{3}$$

$$m_{BC} = {}^{m}AD = 3$$

(AB //

STEP 3 :

Equation of AB:
$$m = -\frac{1}{3}$$
, A(3-5)
 $y - y_1 = m(x - x_1)$
 $y + 5 = -\frac{1}{3}(x - 3)$
 $3y + 15 = -x + 3$
 $x + 3y + 12 = 0$

Equation of BC : m = 3 , C(-1,3)

 $y - y_1 = m (x - x_1)$ y - 3 = 3(x + 1) y - 3 = 3x + 33x - y - 6 = 0

Equation of CD: $m = -\frac{1}{3}$, C(-1,3) $y - y_1 = m(x - x_1)$ $y - 3 = -\frac{1}{3}(x + 1)$ 3y - 9 = -x - 1 x + 3y - 9 + 1 = 0x + 3y - 8 = 0

Equation of AD : m = 3 , A(3-5)

 $y - y_1 = m (x - x_1)$ y + 5 = 3(x - 3) y + 5 = 3x - 9 3x - y - 14 = 0 if (1, 2) and (3, 8) are the opposite vertices of a square, find the equation of the sides

SOLUTION :

STEP 1 :

A(1,2) , C(3, 8)
m =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - 2}{3 - 1} = 3$$

$$tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right|$$

$$tan 45 = \left| \frac{m - 3}{1 + m(3)} \right|$$

$$1 = \left| \frac{m - 3}{1 + 3m} \right|$$

$$\frac{m - 3}{1 + 3m} = 1$$

$$m - 3 = 1 + 3m$$

$$m - 3 = 1 + 3m$$

$$m - 3 = 1 + 3$$

$$m - 3 = -1 - 3m$$

$$m + 3m = -1 - 3m$$

$$m + 3m = -1 + 3$$

$$4m = 2$$

$$m = -2$$

$$m = \frac{1}{2}$$

$$let$$

$$m_{AB} = m_{CD} = -2$$

$$m_{BC} = m_{AD} = \frac{1}{2}$$

$$(AB // CD)$$

$$(BC // AD)$$

STEP 3

Equation of AB: m = -2, A(1,2) $y - y_1 = m(x - x_1)$ y - 2 = -2(x - 1) y - 2 = -2x + 22x + y - 4 = 0

Equation of BC :
$$m = \frac{1}{2}$$
, C(3,8)
 $y - y_1 = m(x - x_1)$
 $y - 8 = \frac{1}{2}(x - 3)$
 $2y - 16 = x - 3$
 $x - 2y + 13 = 0$

Equation of CD: m = -2, C(3,8) $y - y_1 = m(x - x_1)$ y - 8 = -2(x - 3) y - 8 = -2x + 62x + y - 14 = 0

Equation of AD:
$$m = \frac{1}{2}$$
, C(1,2)
 $y - y_1 = m(x - x_1)$
 $y - 2 = \frac{1}{2}(x - 1)$
 $2y - 4 = x - 1$
 $x - 2y + 3 = 0$

01.

Find equation of line parallel to 3x - 4y - 1 = 0and which is at a distance of 3 units from the

point (2, -1)
Reqd. line

$$A$$

 P
 $3x - 4y + 4c = 0$
 A
 P
 $3x - 4y - 1 = 0$
 $m = -\frac{a}{b} = -\frac{3}{-4} = \frac{3}{4}$
SIEP 2: AB
 $mAB = \frac{3}{4} (AB//PQ)$
equation of AB : $y = mx + c$
 $y = \frac{3x + 4c}{4}$
 $4y = 3x + 4c$
 $3x - 4y + 4c = 0$

STEP 3 :

d = 3	
$\frac{3(2) - 4(-1) + 4c}{\sqrt{3^2 + 4^2}}$	= 3
$\frac{6+4+4c}{5} = 3$	3
$\frac{10 + 4c}{5} = 3$	3
$\frac{10 + 4c}{5} = \pm$	± 3
10 + 4c = ±	± 15
10 + 4c = 15	10 + 4c = -15
4c = 5	4c = -25
Equation of AB	Equation of AB
3x - 4y + 5 = 0	3x - 4y - 25 = 0

SOLUTION - QSET 5A

02.

Find equation of line parallel to 3x - 4y - 7 = 0and which is at a distance of 4 units from the point (-2,1)

(-2, 1)d = 4 Read. line 3x - 4y + 4c = 0Δ 3x - 4y - 7 =Q STEP 1: PQ 3x - 4y - 7 = 0 $m = -\underline{a}$ = <u>-3</u> STEP 2 : AB $m_{AB} = \frac{3}{4} (AB//PQ)$ equation of AB : y = mx + c $y = \frac{3x}{4} + c$ $y = \frac{3x + 4c}{4}$ 4y = 3x + 4c3x - 4y + 4c = 0STEP 3 : d = 3 $\frac{3(-2) - 4(1) + 4c}{\sqrt{3^2 + 4^2}} = 4$ $\frac{-6-4+4c}{5}$ = 4 $\frac{-10 + 4c}{5}$ $-\frac{10 + 4c}{5}$ = ± 4 $-10 + 4c = \pm 20$ -10 + 4c = 20-10 + 4c = -204c = 30 4c = -10Equation of AB Equation of AB 3x - 4y + 30 = 03x - 4y - 10 = 0

03.

Find equation of line parallel to 3x + y - 8 = 0and which is at a distance of $\sqrt{10}$ units from the point (3,1)

04.

Find equation of line parallel to x + 3y - 5 = 0and which is at a distance of $3\sqrt{10}$ units from the point (2,-2)

STEP 3 :

$$d = 3$$

$$\frac{(2) + 3(-2) - 3c}{\sqrt{1^2 + 3^2}} = 3\sqrt{10}$$

$$\frac{2 - 6 - 3c}{\sqrt{10}} = 3\sqrt{10}$$

$$\frac{-4 - 3c}{\sqrt{10}} = 3\sqrt{10}$$

$$\frac{-4 - 3c}{\sqrt{10}} = \pm 3\sqrt{10}$$

$$-4 - 3c = \pm 30$$

$$-4 - 3c = 30$$

$$-4 - 3c = 34$$

$$-4 - 3c = -34$$

$$3c = -34$$

$$3c = -26$$
Equation of AB
$$\frac{x + 3y + 34 = 0}{x + 3y - 26 = 0}$$

01.

Find the points on the line x + y + 3 = 0distance from $x + 2y + 2 \equiv 0$ is $\sqrt{5}$ whose units fh,kJ x + y + 3 = 0 $d = \sqrt{5}$ x + 2y + 2 = 0

SOLUTION - QSET 5B

STEP 1 :

Since (h,k) lies on x + y + 3 = 0, it must satisfy the equation

 \therefore h + k = -3 (1)

STEP 2:

$$d = \sqrt{5}$$

$$\frac{h + 2k + 2}{\sqrt{1^2 + 2^2}} = \sqrt{5}$$

Т

$$\frac{h+2k+2}{\sqrt{5}} = \pm \sqrt{5}$$

$$h + 2k + 2 = \pm 5$$

$$h + 2k + 2 = 5$$

$$h + 2k = 3 \dots (2)$$

$$h + 2k = 3 \dots (2)$$

$$h + 2k = -3$$

$$h + 2k = -7 \dots (3)$$

$$Solving (1) \& (3)$$

$$h + k = -3$$

$$h + 2k = -7$$

$$h + 2k = -3$$

$$h + 2k = -7$$

$$h + 2k = -3$$

$$h + 2k = -7$$

$$h + 2k = -3$$

$$h + 2k = -7$$

$$h + 2k = -7$$

$$h + 2k = -3$$

$$h + 2k = -7$$

$$h + 2k = -3$$

$$h + 2k = -7$$

$$h + 2k = -3$$

$$h +$$

02.

Find the points on the line x + y - 4 = 0whose distance from 4x + 3y = 10 is 1 units

0

STEP 1: Since (h,k) lies on x + y - 4 = 0, it must satisfy the equation \therefore h + k = 4 (1) STEP 2: d = 1 $\frac{4h + 3k - 10}{\sqrt{4^2 + 3^2}} = 1$ $\frac{4h+3k-1}{5}0 = \pm 1$ $4h + 3k - 10 = \pm 5$ 4h + 3k - 10 = 5 4h + 3k - 10 = -5 $4h + 3k = 5 \dots (3)$ $4h + 3k = 15 \dots (2)$ Solving (1) & (2) Solving (1) & (3) Eq (1) x 4 Eq (1) x 4 4h + 4k = 164h + 4k = 16 $\frac{4h + 3k}{k} = 15$ $\frac{4h + 3k}{k} = \frac{5}{11}$ subs in (1) h + 1 = 4h + 11 = 4 h = 3 h = -7 (3,1) (-7, 11)

03.

Find the points on the line 2x + 3y + 4 = 0whose distance from 3x + 4y - 6 = 0 is 2 units 2x + 3y + 4 = 0d = 13x + 4y - 6 = 0

STEP 1 :

Since (h,k) lies on 2x + 3y + 4 = 0, it must satisfy the equation $\therefore 2h + 3k = -4$ (1)

STEP 2:

d = 1 $\left| \frac{3h + 4k - 6}{\sqrt{3^2 + 4^2}} \right| = 2$

$3h + 4k - 6 = \pm 2$				
5				
$3h + 4k - 6 = \pm 10$				
3h + 4k - 6 = 10	3h + 4k - 6 = -10			
$3h + 4k = 16 \dots (2)$	3h + 4k = -4 (3)			
Solving (1) & (2)	Solving (1) & (3)			
$2h + 3k = -4 \times 3$	2h + 3k = - 4 x 3			
$3h + 4k = 16 \times 2$	$3h + 4k = -4 \times 2$			
6h + 9k = - 12	6h + 9k = - 12			
$_{6h + 8k} = _{32}$	_6h <u>+</u> 8k = _I 8			
k = - 44	k = - 4			
subs in (1)	subs in (1)			
2h + 3(-44) = -4	2h + 3(-4) = -4			
2h - 132 = -4	2h - 12 = -4			
2h = -4 + 132	2h = -4 + 12			
2h = 128	2h = 8			
h = 64	h = 4			
(64,-44)	(4,-4)			

04.

Find the points on the line 2x + y - 3 = 0whose distance from 6x - 8y - 3 = 0 is 0.5 units 2x + y - 3 = 0d = 0.56x - 8y - 3 = 0

STEP 1:

Since (h,k) lies on 2x + y - 3 = 0, it must satisfy the equation $\therefore 2h + k = 3 \dots (1)$

STEP 2 :

$$d = 0.5$$

$$\frac{6h - 8k - 3}{\sqrt{6^2 + 8^2}} = 0.5$$

$$\frac{6h - 8k - 3}{10} = \pm 0.5$$

$$6h - 8k - 3 = \pm 5$$

6h - 8k - 3 = 5	6h - 8k - 3 = -5
6h – 8k = 8	6h – 8k = –2
$3h - 4k = 4 \dots$ (2)	$3h - 4k = -1 \dots (3)$
Solving (1) & (2)	Solving (1) & (3)
$2h + k = 3 \times 4$	2h + k = 3 x 4
3h - 4k = 4	3h - 4k = -1
8h + 4k = 12	8h + 4k = 12
3h - 4k = 4	3h - 4k = -1
11h = 16	11h = 11
h = $\frac{16}{11}$	h = 1
subs in (1)	subs in (1)
$\frac{32}{11}$ + k = 3	2 + k = 3
k = 3 - 32	k = 1
$k = \frac{1}{11}$	(1 , 1)
(¹⁶ / ₁₁ , ¹ / ₁₁)	

05.

Find the coordinates of the point on X - axis whose distance from the line $x + \sqrt{3}y - 2 = 0$ is 5 units $\begin{pmatrix} (h,0) \\ d = 5 \\ x + \sqrt{3}y - 2 = 0 \\ B \end{bmatrix}$ STEP 1: d = 5 $\begin{vmatrix} h + \sqrt{3}(0) - 2 \\ \sqrt{1^2 + \sqrt{3}^2} \end{vmatrix} = 5$ $\begin{vmatrix} h - 2 \\ 2 \\ 1^2 + \sqrt{3}^2 \end{vmatrix} = 5$ $h - 2 = \pm 10$ h - 2 = -10h = -8(12.0)(-8.0)